

Ряды динамики. Анализ ряда динамики

Кагирова Мария Вячеславовна, доцент, кандидат экономических наук, преподаватель кафедры статистики и кибернетики РГАУ-МСХА им. К. А. Тимирязева

Вопросы:

- Элементы ряда динамики. Показатели ряда динамики
- Автокорреляция
- Выявление структуры динамического ряда

Элементы ряда динамики. Показатели ряда динамики

Рядом динамики называется ряд числовых значений признака, расположенных в хронологической последовательности

Пример ряда динамики:

Число общеобразовательных организаций, тыс. единиц

Год	2011	2012	2013	2014	2015
Число организаций, ты единиц	oic. 47,1	45,7	44,4	44	42,7

Ряд динамики содержит два элемента:

Показатель времени, обозначаем t

Уровень ряда, обозначаем y_t (t от 1 до n)

Элементы ряда динамики. Показатели ряда динамики

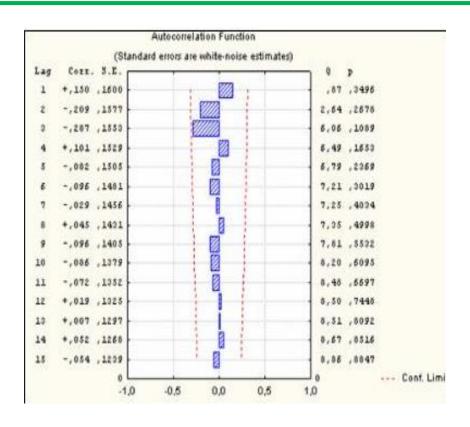
Факторы, формирующие уровень динамического ряда:

- факторы, формирующие тенденцию ряда (Т);
- факторы, формирующие циклические колебания ряда (S);
- случайные факторы (Е).

Элементы ряда динамики. Показатели ряда динамики

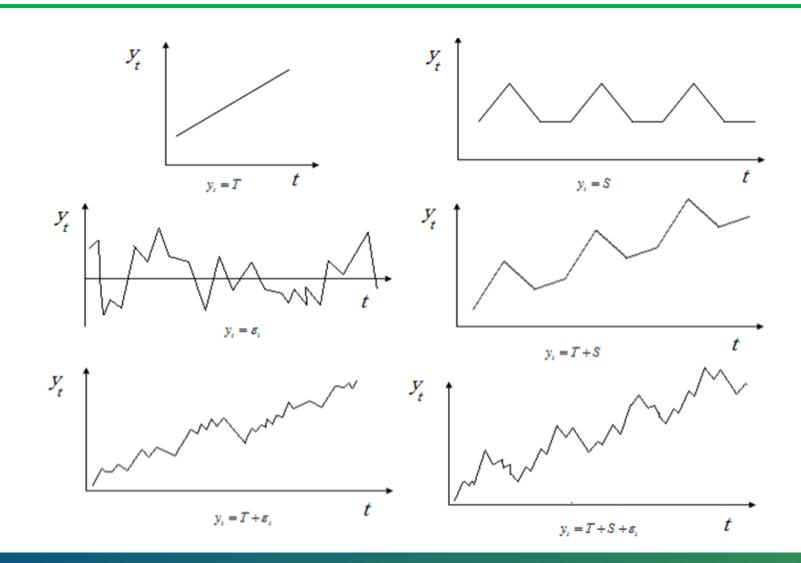
Показатель	Цепной	Базисный	Средний
Абсолютный прирост А	<i>A=y_i-y_{i-1}</i>	$A=y_i-y_0$	$\bar{A} = \frac{y_n - y_1}{n - 1}$
Коэффициент роста К	$K = \frac{y_i}{y_{i-1}}$	$K = \frac{y_i}{y_0}$	$\overline{K} = \sqrt[n]{\frac{y_n}{y_1}}$
Темп прироста Т	$T = \frac{A_{ii}}{y_{i-1}} \times 100$	$T = \frac{A_{6i}}{y_1} \times 100$	$\bar{T} = \bar{K} \times 100 - 100$

$$r_{yx} = \frac{Cov(y,x)}{\sigma_x \sigma_y} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 (y - \overline{y})^2}}$$


$$r_1 = \frac{\sum_{t=2}^{n} (y_t - \bar{y}_1)(y_{t-1} - \bar{y}_2)}{\sqrt{\sum_{t=2}^{n} (y_t - \bar{y}_1)^2 (y_{t-1} - \bar{y}_2)^2}}$$

Расстояние между уровнями временного ряда, для которых определяется коэффициент корреляции, называется лагом.

Приведенная выше формула определяет величину автокорреляции между соседними уровнями, то есть при лаге = 1, поэтому этот коэффициент называют коэффициентом автокорреляции первого порядка.



Если расположить коэффициенты по величине лага, получим автокорреляционную функцию временного ряда.

График зависимости величины коэффициента автокорреляции от лага называют коррелограммой.

Выявление структуры динамического ряда

	Коэффициенты автокорреляции						
Лаг	Варианты						
	А	Б	В	_			
1	0,98	0,43	0,63	0,09			
2	0,95	0,97	0,38	0,12			
3	0,94	0,51	0,72	0,07			
4	-	0,92	0,97	0,10			
5	-	-	0,55	-			
6	-	-	0,40	-			

Спасибо за внимание!