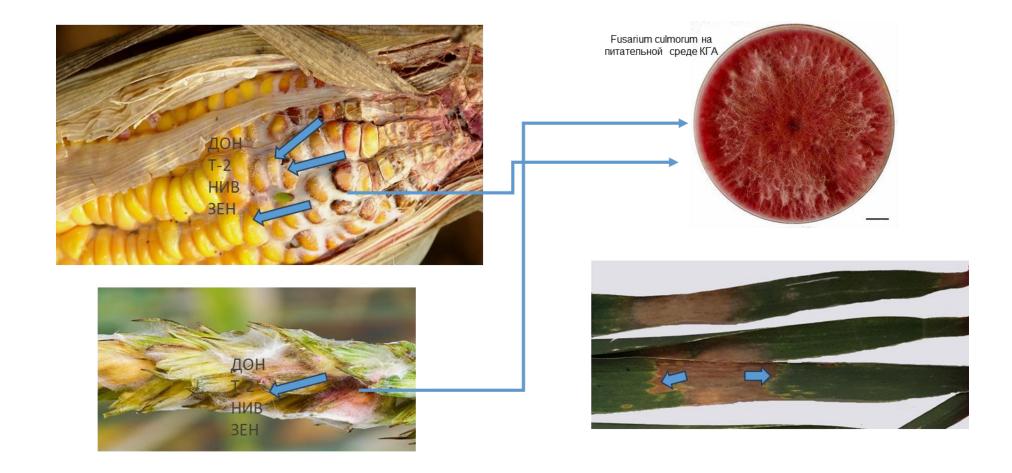


Современное состояние проблемы микотоксинов в кормах для сельскохозяйственных животных

Тараканов Рашит Ислямович, ассистент кафедры защиты растений РГАУ-МСХА имени К. А. Тимирязева



Микотоксины - от греч. μύκης, mykes, mukos — «гриб» и лат. τοξικόν

- Это низкомолекулярные токсичные вторичные метаболиты, продуцируемые микроскопическими грибами, которые, отличие от первичных метаболитов (сахаров, аминокислот и других веществ), не являются незаменимыми для нормального обмена веществ гриба.
- Токсигенность способность организма образовывать вещества, обладающие токсическим действием на другие организмы.

Химическая структура	Пример микотоксинов	
соединений		
поликетиды	афлатоксины, охратоксин, патулин, зеараленон	
терпеноиды	трихотецены	
циклопептиды	эргоалкалоиды	
сфинголипиды	фумонизины	

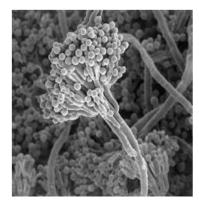
Эргоалкалоиды (клавины, эргопептиды) продуценты — Claviceps purpurea (C. fusiformis, C. paspali, C. africana)

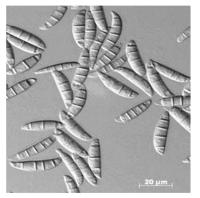
XII-XV вв. – массовые отравления людей в Европе 1951 г. – отравления людей во Франции 1977-1978 гг. – эпидемия эрготизма в Эфиопии

М. Грюневальд. Искушение святого Антония

П. Брейгель. Нищие (Калеки)

Наиболее опасные и широко распространенные токсигенные виды грибов


Aspergillus


«плесени хранения» = «амбарные грибы»

Penicillium

Fusarium

«полевые грибы»

Грибы – основные продуценты микотоксинов

Родгрибов	Основные продуцируемые микотоксины		
	Афлатоксины B1, B2, G1, G2, M1		
Aspergillus	Охратоксин А		
Aspergillus	Стеригматоцистин		
	Циклопиазоновая кислота		
Penicillium	Охратоксин A Цитринин Патулин		
	Трихотецены группы А:		
	T-2 и HT-2 токсины, диацетоксисцирпенол, неосоланиол		
Functions	<u>Трихотецены группы В</u> : ниваленол, дезоксиниваленол, фузаренон Х		
Fusarium	Зеараленон		
	Фумонизины (В1, В2, В3, В4),		
	Монилиформин		

Токсический эффект микотоксинов

Мичетемении	Основной токсический	
Микотоксины	эффект	
афлатоксины B1, B2, G1, M1; охратоксин A,		
стеригматоцистин, циклопиазоновая	канцерогены	
кислота, фумонизин В1		
афлатоксин B1, лютеоскирин, фумонизин B1	гепатотоксины	
охратоксин А, цитринин	нефротоксины, тератогены	
афлатоксин В1, охратоксин А, трихотецены, монилиформин	иммуносупрессоры	
эргоалкалоиды, циклопиазоновая кислота, фумонизин B1	нейротоксины	
зеараленон	эстроген	
монилиформин	кардиотоксин	
афлатоксины, патулин, лютеоскирин	мутагены	

Подробнее о токсическом эффекте фузариотоксинов

Микотоксины	Механизмы действия	Токсический эффект	
Трихотецены	Ингибирование синтеза рибосомных белков, биосинтеза ДНК и РНК, вызывают клеточный окислительный стресс, апоптоз и дисфункцию клеточных мембран	Иммуносупрессоры. Замедление роста репродуктивные расстройства, отказ от корма (анорексия), рвота, кровоизлияния, диарея.	
Зеараленон	Связывание с рецепторами эстрогена	Эстроген, анаболик. Нарушения функций репродуктивной системы.	
Фумонизины	Вмешательство в биосинтез сфинголипидов — ингибирование церамидсинтазы; нарушения структуры и функций клеточных мембран;	Канцерогены. Нейротоксины негативно действуют на эмбрионы, вызывают нарушения в печени и почках.	
Монилиформин	Ингибирование синтеза белков, цитотоксичность и повреждение хромосом. Повреждения митохондрий миокарда.	Кардиотоксин. Острая сердечная недостаточность. Имменосупрессор. Снижение веса, кровоизлияния.	

Примеры интоксикаций, вызванные действием микотоксинов

Афлатоксикозы

Причина — А. flavus; микотоксины — афлатоксины 1960 г. — массовый падеж 100 000 индюшек в Великобритании (turkey X disease)

1974 г. – рак печени у ~400 человек в Индии

Патулин-токсикоз

Причина – Penicillium spp.; микотоксин - патулин 1954 г. – массовый падеж коров в Японии

«Пьяный хлеб»

Причина — F. graminearum; микотоксин — ДОН 1880-1890 гг. — Приморский край Дальнего Востока России

Алиментарно-токсическая алейкия (АТА) = септическая ангина

Причина — F. sporotrichioides; микотоксин — Т-2 токсин 1932-1946 гг. — Уральский регион, Казахстан, Сибирь, центральные и северо-западные области СССР

1989 г. – Индия

1993 г. – Китай

Воздействие микотоксинов на здоровье животных

Микотоксикозы — заболевания, возникающие при употреблении некачественной пищи, загрязненной токсичными метаболитами грибов.

Микотоксикозы — заболевания, возникающие при употреблении некачественной пищи, загрязненной токсичными метаболитами грибов.

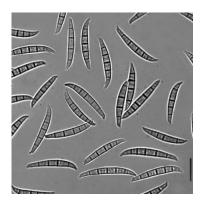
Проявления микотоксикозов:

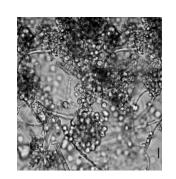
- Отказ от корма
- Снижение продуктивности
- Иммуносупрессия
- Повреждение внутренних органов (печень, почки, органы половой системы и др.)
- Язвенный стоматит
- Эпидермальные некрозы

Термостабильность микотоксинов

Микотоксин	Мол. масса, г/моль	Т плав. <i>,</i> °С
Эргоалкалоиды	>70 соединений	162-249
Афлатоксин В1	312	268-269
Афлатоксин М1	328	299
Охратоксин А	403	169
Патулин	153	105-108
Дезоксиниваленол	296	151-153
Ниваленол	312	222-223
Т-2 токсин	466	150-151
Диацетоксисцирпенол	366	162-164
Зеараленон	318	164-165
Монилиформин	120	345-355

Грибы рода Fusarium




F. graminearum

Грибы рода Fusarium – продуценты микотоксинов

	Трихотеценовые микотоксины				Φ	N.4	
Вид гриба	Дезокси- ниваленол (ДОН)	Т-2/НТ-2 Токсины	Нива- ленол (НИВ)	Диацетокси- сцирпенол (ДАС)	Зеара- ленон (ЗЕН)	Фумо- низины (ФУМ)	Монили- формин (МОН)
F. graminearum	+++		+		+++		
F. culmorum	++		+		++		
F. sporotrichioides		+++		+	+		
F. langsethiae		+++		++			
F. poae			++	++			
F. cerealis			++		+		
F. avenaceum							+++
F. tricinctum							+++
F. equiseti				++	++		
F. verticillioides						+++	+
F. proliferatum						++	++
F. subglutinans					+	+	++
F. oxysporum						+	+

Определенный вид гриба способен продуцировать определенный набор микотоксинов

Один вид гриба может продуцировать несколько различных микотоксинов

Один микотоксин может быть образован несколькими видами грибов

Нормирование фузариотоксинов в зерне и зерновой продукции

Т-2 токсин 100 мкг/кг

Дезоксиниваленол 700-1000 мкг/кг

Зеараленон 200-1000 мкг/кг

Фумонизины 4000 мкг/кг 200 мкг/кг в кукурузной муке для детского питания

СанПиН 2.3.2.1078-01, 2012 г. с доп.; TP TC 015/2011 «О безопасности зерна»; ТР TC 021/2011 «О безопасности пищевой продукции»;

Рекомендуемые безопасные предельно-допустимые концентрации микотоксинов в зерне и зернопродукции

ПДК микотоксинов варьирует в зависимости от типа зерновой культуры, типа продукции и её потребителя.

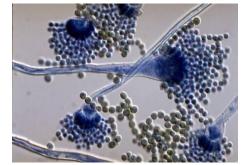
	Содержание в зерне, мкг/кг (ppb)				
Микотоксины	на пищевые цели		на кормовые і	цели	
	Россия ^а	ECb	Россия	EC	
дон	700-1000	200-1750	1000	900-12000	
Т-2 токсин	100	15-200	100	250-2000	
Зеараленон	200-1000	20-350	1000	100-3000	
Фумонизины	200-4000	200-4000	5000	5000-60000	

а СанПиН 2.3.2.1078-01, 2012 г. с доп.;

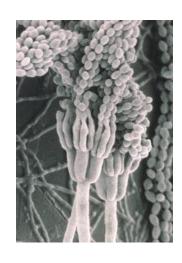
ТР ТС 015/2011 «О безопасности зерна»;

ТР ТС 021/2011 «О безопасности пищевой продукции»;

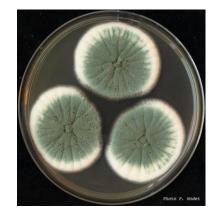
b Commission Regulation (EC) No 1881/2006 ; Commission Recommendation 2006/576/EC и 2013/165/EU


Грибы рода Aspergillus – продуценты микотоксинов

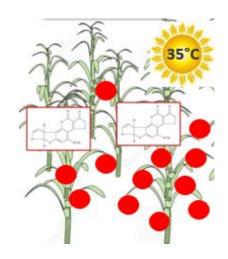
Продуцент	Микотоксин	
A. flavus, A. parasiticus, A. nomius	Афлатоксин В1	
A. ochraceus, A. westerdijkiae,	Q A	
A. steynii, A. clavatus	Охратоксин А	
A. nidulans, A. versicolor	Стеригматоцистин	
A. niveus, A. terreus, A. clavatus	Патулин	
A. niveus, A. oryzae, A. terreus	Цитринин	
A. flavus	Циклопиазоновая кислота	

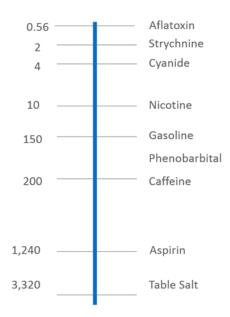


A. ochraceus


Грибы рода Penicillium – продуценты микотоксинов

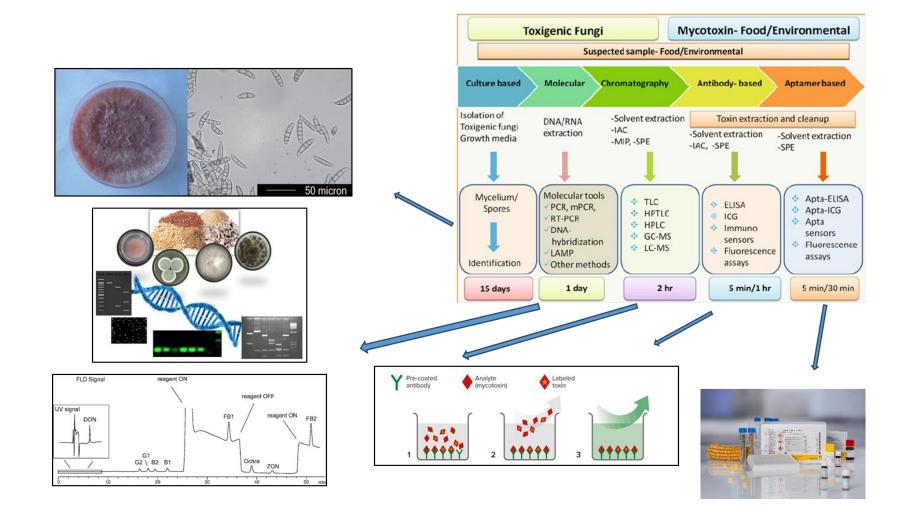
Продуцент	Микотоксин
P. verrucosum	Охратоксин А
P.citrinum, P.verrucosum, P. expansum	Цитринин
P.expansum, P.carneum, P.paneum	Патулин
P.commume, P.camamberti, P.palitans	Циклопиазоновая кислота




Aspergillus flavus

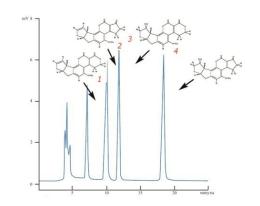
Aflatoxin (AFB1)

Острая оральная токсичность ЛД₅₀ мг/кг


- Повсеместный почвенный патоген
- Споры прорастают в жару (34-36°C) и при засушливых условиях
- ПДК > 5 мкг/кг, делает зерно непригодным для потребления человеком или животными
- На рынке не существует традиционных продуктов СЗР, способных непосредственно контролировать уровень афлатоксинов

Диагностика микотоксинов. Инструментальные методы

Хроматографический анализ


AGRASTRIP PRO Охратоксин WATEX Тест набор

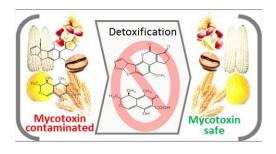
Тест полоски методом ИФА

ЭКСПРЕСС-ТЕСТ «AFLASENSOR QUANTI» КІТО62 — для афлатоксина

1 — дериватизированный афлатоксин G1, 2 — дериватизированный афлатоксин B1, 3 — афлатоксин G2, 4 — афлатоксин B2 Рисунок 1. Типовая хроматограмма образца, содержащего микотоксины.

Тест-системы для лабораторной диагностики микотоксинов методом ИФА

Борьба с микотоксинами


Борьба с микотоксинами имеет важное значение для общественного здравоохранения и улучшения экономической ситуации в стране.

Поэтому в различных регионах мира был рассмотрен ряд стратегий по снижению уровня микотоксинов и борьбе с ними.

Борьба с микотоксинами включает в себя:

- Предотвращение роста плесени или грибов на сельскохозяйственных культурах и других кормах;
- Обеззараживание кормов/пищевых продуктов, загрязненных микотоксинами, в качестве дополнительной стратегии;
- Постоянный надзор за содержанием микотоксинов в сельскохозяйственных культурах, кормах для животных и продуктах питания человека.

Предотвращение роста плесени или грибов на сельскохозяйственных культурах и других кормах

На поле

- мониторинг первичных проявлений возбудителей болезней – продуцентов микотоксинов (чернь колоса, початков, фузариозы зерна, альтернариозы)
- оптимальная система удобрений
- оптимизация севооборота
- соблюдение правил заготовки и хранения кормового сырья
- обработка семян фунгицидами и протравителями в начальные фазы развития болезней
- оптимальное время уборки

Пример — Микацид (пропионовая кислота сорбиновая кислота, Аммоний, полиглицерол полирицинолеат, краситель бриллиантовый синий, вода) - ингибитор плесени и патогенной микрофлоры в кормах и кормовом

На кормах в хранилище

- контроль качества зерна при приеме в хранилище.
- снижение температуры хранения ниже 15–18°C
- влажность кормов менее 11–12%
- наличие системы вентиляции в хранилище
- влажность в хранилищах ниже 60%
- отсутствие нарушения целостности зерна
- борьба с вредителями запасов

На зерне в хранилище

- применение препаратов ингибиторов плесени
- механическое отделение испорченного зерна

Адсорбенты и нейтрализаторы микотоксинов

- связывание и выведение микотоксинов происходит в пищеварительном тракте животных и птиц.
- можно вывести из организма свиней, скота и птицы до 30-40% и даже 70% различных токсинов.
- рекомендуется скармливать животным постоянно в качестве профилактического средства в количестве от 0,2–0,5 до 2% от рациона.

В России зарегистрировано более 100 импортных и отечественных препаратов. Около 30 продуктов рекомендованы для нейтрализации афлатоксина, остальные зарегистрированы как эффективные против других микотоксинов, например ДОН, зеараленон, Т-2 токсин, фумонизин и т.д.

В зависимости от механизма действия их можно разделить на две группы — прямого действия на микотоксины (адсорбирующие и биотрансформирующие агенты) и вторичного действия (снижающие негативный эффект микотоксина на организм животного).

Кормомикс®СОРБ КЛИНФИД СИМБИТОКС и др

Адсорбирующий эффект минеральных компонентов препаратов - захват и выведение ряда микотоксинов из пищеварительного тракта.

К неорганическим адсорбентам относятся природные (цеолиты или клиноптилолит, бентониты, диатомиты, сепиолит, иллит, каолинит) и синтетические (калий, натрий, алюмосиликаты).

Неорганические адсорбенты

- низкая цена, но способны связывать в организме животных витамины, аминокислоты и ферменты.
- большинство неорганических адсорбентов используют только против афлатоксинов.

Адсорбирующим эффектом обладают β-глюканы клеточных стенок инактивированных дрожжей и водорослей, а также лигнин и уголь.

- на основе клеток водорослей и глюканов дрожжевых клеток Микосорб А+.
- препарат Новазил Плюс от BASF афлатоксины.

Биотрансформация воздействие на микотоксины специфическими ферментами или агентами. Разрушение токсина происходит непосредственно в желудочно-кишечном тракте.

Микофикс Плюс 5.0 и Микофикс Селект 5.0- дезактивация охратоксина А происходит за счет ферментативного расщепления амидной связи в токсине, молекул фумонизина В — за счет расщепления диэфирных связей, трихотеценов — вследствие расщепления связей эпоксидных групп, зеараленона — путем расщепления лактонового кольца.

Компания «Новус» Novus использует специфический агент — модифицированный лецитин.

Использование пектинов в качестве органических сорбентов, наличие комплекса микроорганизмов, обладающих свойством подавления бактерий рода Clostridium и плесневых грибов, ферментного комплекса, осуществляющего биотрансформацию токсинов, и ввод расторопши в качестве гепатопротектора обеспечивают эффективность и высокий спрос на БАЦИТОКС-2.0 (ООО «НТЦ БИО»).

Компонент лютеин, известный своими гепатопротекторными свойствами, входящий в комплексный препарат Токсибан Maкc (Novus Int.) в дополнение к адсорбирующим (бентонит) и биотрансформирующим компонентам (модифицированный лецитин), помогает животному и птице максимально противостоять микотоксинам и их негативному воздействию на организм.

В комплексные препараты некоторые производители добавляют эфирные масла (Заслон от «Биотроф») или комплекс цельных растительных компонентов (Юнике Плюс от Nutriad, Эсцент от Innovad).

Среди перспективных направлений экологически чистого животноводства — применение пробиотиков, обладающих антигрибковым действием. Например, нейтрализатор микотоксинов Фунгистат (НПФ «Элест») содержит споры бактерий рода Bacillus subtilis, который подавляет развитие плесеней, при этом продуцирует в ЖКТ аминокислоты и витамины.

В состав нейтрализаторов микотоксинов могут входить органические кислоты и их соли, которые нарушают энергетический баланс, синтез белков и ферментов плесневой клетки, что приводит к ее гибели (АтоксБио Плюс от «ТекноФид», Эксеншиал Токсин Плюс от ORFFA). Гуминовые кислоты и фумаровую кислоту содержит препарат Микософт (НПЦ «АгроСистема»).

Мощным сорбентом органического происхождения является хитозан. На его основе производится препарат Хитолоза (НПФ «Элест»).

Высоким эффектом деактивации микотоксинов обладают комплексные препараты группы Токси-Нил (Бельгия Nutriad) содержащие глинистые материалы (алюмосиликаты, бентониты, сепиолиты и др.), стенки дрожжевой клетки, также органические кислоты, антиоксиданты и фитобиотики.

В состав кормовой добавки Апсабонд (Andres Pintaluba) входят 3 вида очищенных природных глин и инактивированные дрожжевые клетки. Препарат Эксеншиал Токсин Плюс (ORFFA) обладает пятью активностями, в нем сочетаются сразу несколько минеральных адсорбентов (филлосиликаты и тектосиликаты) для сорбции полярных микотоксинов, МОС для сорбции неполярных микотоксинов, пропионат аммония, обладающий фунгистатическим свойством, и бетаин. Специалисты компании «АгроБалт трейд» разработали препарат Амиго, содержащий сразу два адсорбента с взаимодополняющей специфичностью по связыванию отдельных групп микотоксинов.
Зарубежные производители нейтрализаторов микотоксинов: Alltech, BIOMIN, BASF, Nutriad, OLMIX, Daavision, GRASP, Kemin, CEVA, Impextraco, Daavision, Biochem, Liptosa,

Andres Pintaluba, ORFFA и др.

Отечественные производители нейтрализаторов микотоксинов: «Агроакадемия», НПЦ «Агросистема», «Мустанг Технологии Кормления», «АгроБалт трейд», «Биотроф», «БИОРОСТ», «ВитОМЭК», «НТЦ БИО», «Сиббиофарм», «ТекноФид», НПФ «Элест», «Экокремний» и др.

Выводы

Микотоксины — это токсичные вещества природного происхождения, вырабатываемые некоторыми видами плесневых грибов.

- Появление плесени может иметь место как до, так и после уборки урожая, на этапе хранения и/или на готовых продуктах питания в условиях благоприятной температуры и высокой влажности.
- Большинство микотоксинов отличается химической стабильностью и не разрушается в процессе термической обработки.

Среди нескольких сотен известных микотоксинов наиболее распространенными и представляющими наибольшую угрозу для здоровья человека и скота являются: афлатоксины, охратоксин А, патулин, фумонизины, зеараленон и ниваленол/дезоксиниваленол.

Для снижения риска для здоровья животного, связанного с микотоксинами, рекомендуется:

- анализировать поступаемое зерно и корма на наличие микотокинов;
- проводить мониторинг первичных проявлений возбудителей болезней продуцентов микотоксинов;
- избегать повреждения зерна до и в процессе сушки и на этапе хранения, поскольку поврежденное зерно более подвержено заражению плесенью, а значит и контаминации микотоксинами;
- избегать длительного хранения кормов до их употребления;
- закладывать на хранение зерно с низкой влажностью;
- создавать оптимальные условия для хранения кормов;
- при наличии в кормах грибов-продуцентов и микотоксинов проводить обработку зерна ингибиторами плесени, а в рацион животных добавлять адсорбенты и нейтрализаторы.

Спасибо за внимание!