

Системы управления базами данных

Быстренина Ирина Евгеньевна, кандидат педагогических наук, доцент кафедры прикладной информатики РГАУ-МСХА имени К. А. Тимирязева

Система управления базами данных (СУБД) — это совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования БД многими пользователями. СУБД обрабатывает поступающие запросы от пользователей и прикладных программ к БД, а затем выдает необходимые им сведения.

Основное назначение СУБД — быть связующим звеном между пользователем (его запросом или приложением, в котором сформулирован запрос) и базой данных.

В результате СУБД выступает в качестве:

- среды взаимодействия пользователя и базы данных,
- инструментальных средств создания и ведения базы данных.

- управление данными во внешней памяти;
- управление данными в оперативной памяти;
- управление транзакциями;
- журнализация, резервное копирование и восстановление
- поддержка языков БД.

Управление данными во внешней памяти

Возможность сохранять, извлекать и обновлять данные в базе данных

Контроль доступа к данным — возможность обеспечить только санкционированный доступ к базе данных, используя защиту паролем, поддержку уровнен доступа к базе данных и к отдельным ее элементам и т.д.

Обеспечение параллельной работы нескольких пользователей. Управление параллельностью заключается в том, что СУБД имеют механизм блокировок, который гарантирует корректное обновление данных многими пользователями при одновременном доступе. Типы блокировок: табличные, страничные, строчные и др.

Поддержка целостности данных осуществляется инструментальными средствами контроля для того, чтобы данные и их изменения соответствовали заданным правилам.

Целостность БД — свойство, означающее, что в БД содержится полная, непротиворечивая и адекватно отражающая предметную область информация.

Целостность описывается с помощью различных ограничений (ограничение диапазона возможных значений атрибутов объектов, отсутствие повторяющихся записей в таблице БД и др.)

Буферизация данных в оперативной памяти — один из основных способов увеличения скорости доступа к данным БД.

Буферы — области оперативной памяти, предназначенные для ускорения обмена между внешней и оперативной памятью.

В буферах временно хранятся фрагменты БД, которые планируется использовать.

Управление транзакциями

Транзакция — совокупность действий над базой данных, рассматриваемых СУБД как единое целое.

Если транзакция выполняется успешно, СУБД фиксирует изменения БД, произведенные этой транзакцией, во внешней памяти. Если все изменения в рамках транзакции отменяются, ни одно из них никак не отражается на состоянии БД.

Понятие транзакции необходимо для поддержания логической целостности БД.

Пример: операция перевода денег с одного счета на другой в банковской системе.

Допустим с одного счета были сняты деньги (т.е. счет уменьшился на n-ю сумму), далее произошел сбой в системе и другой счет не увеличился на эту сумму. В результате происходит откат транзакции, т.е. отмена всех операций (первый счет восстановится).

Журнализация, резервное копирование, восстановление

Одно из основных требований к СУБД — надежность хранения данных во внешней памяти, т.е. возможность ее восстановления.

Журнализация изменений заключается в последовательной записи во внешнюю память всех изменений, выполняемых в базе данных. Записывается следующая информация: порядковый номер, тип и время изменения; идентификатор транзакции; объект, подвергшийся изменению (номер хранимого файла и номер блока данных в нем, помер строки внутри блока); предыдущее состояние объекта и новое состояние объекта.

Журнал является особой частью базы данных, недоступной пользователям СУБД.

Резервное копирование базы данных — процесс создания копии данных на носителе, предназначенном для восстановления данных в оригинальном или новом месте их расположения в случае их повреждения или разрушения.

Восстановление базы данных — функция СУБД, которая в случае логических и физических сбоев приводит базу данных в актуальное состояние.

Язык описания данных (ЯОД). Язык высокого уровня декларативного типа. Предназначен для описания логической структуры (схемы) базы данных.

Языки манипулирования данными (ЯМД). Языки высокого уровня для определения действий над данными. Подразделяются:

ЯМД навигационного типа - процедурный язык для разработки приложений.

ЯМД спецификационного типа. Это языки запросов – непроцедурные языки для выражения запросов к базе данных. Такими языками являются:

- SQL (Structured Query Language) структурированный язык запросов. Считается стандартом языков манипулирования данными в реляционных СУБД.
- QBE (Query-by-Example) язык запросов по образцу. Применяется для построения запросов в режиме конструктора.

Обеспечиваются утилитами для эффективного администрирования БД:

- экспорт/импорт данных;
- мониторинг базы данных (отслеживание характеристик функционирования и использования базы данных);
- статистический анализ, позволяющий оцепить производительность или степень использования базы данных;
- реорганизация индексов;
- сборка «мусора» (неиспользуемых записей) и перераспределение памяти для физического устранения удаленных записей с запоминающих устройств, объединение освобожденного пространства и перераспределение памяти в случае необходимости.

Ядро СУБД это набор программных модулей, необходимый и достаточный для создания и поддержания БД. Отвечает за управление данными во внешней памяти, управление буферами оперативной памяти, управление транзакциями и журнализацию.

Подсистема поддержки времени выполнения интерпретирует программу манипулирования данными, создающие пользовательский интерфейс с СУБД.

Процессор языка БД компилирует операторы языка баз данных и некоторую выполняемую программу, представляемую в машинных кодах.

Сервисные программы (внешние утилиты) предоставляют пользователям ряд дополнительных возможностей и услуг: загрузка/выгрузка БД, глобальная проверка целостности БД и др.

Архитектура базы данных. Физическая и логическая независимость данных

В 1978 г. была принята трехуровневая система организации данных, предложенная Национальным Институтом стандартизации — ANSI (American National Standards Institute). В настоящее время данная архитектура СУБД является наиболее распространенной.

- Концептуальный уровень отражает обобщенную модель предметной области (объектов реального мира), для которой создается БД (общий взгляд пользователя на данные проектируемой БД).
- Внешний уровень отражает представление конечного пользователя и отдельных приложений о конфигурации данных (например, системе отдела кадров нужны сведения о возрасте, домашнем адресе сотрудника, а системе расчета зарплаты квалификация работника, стаж).
- Физический уровень отражает описание данных на носителях.

Данная архитектура позволяет обеспечить логическую и физическую независимость при работе с данными.

Логическая независимость предполагает возможность изменения одного приложения без корректировки других, работающих с этой же БД. **Физическая независимость** предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, работающих с БД. Логическая независимость устанавливается между уровнями 1 и 2, физическая — между уровнями 2 и 3.

Этапы развития технологий обработки данных

- Первые БД в промышленности. 1968 г. введена в эксплуатацию первая промышленная СУБД фирмы IBM.
- Большой вклад в развитие теории БД внес американский математик Э.Ф. Кодд создатель реляционной модели данных. Она остается самой востребованной до настоящего времени.
- С середины 70-х гг. БД стали использоваться в разработках в области экспертных систем и систем баз знаний. В БД стали применяться механизмы представления знаний, разработанных в области искусственного интеллекта, создания объектноориентированных БД.
- Следующий этап развития БД связан с появлением персональных компьютеров. Большинство СУБД того времени имели удобный пользовательский интерфейс. Создавались стандарты высокоуровневых языков манипулирования данными. Требования со стороны СУБД к аппаратному обеспечению не высокие. Представители настольных СУБД: dBase, FoxPro, Clipper, Paradox.

Следующий этап развития БД — этап интеграции — использование локальных сетей, рост объема обрабатываемой информации. Во второй половине 90-х гг. появились сверхбольшие БД.

Современный этап развития БД связан с появлением новых способов доступа к данным:

- Грид-технологии. Грид это форма распределенных вычислений. Представляет собой децентрализованную компьютерную сетевую среду, в которой ресурсы различных узлов доступны пользователям через единый интерфейс. Технология требует значительных вычислительных ресурсов. Применяется в научных, математических исследованиях.
- **Технология Web**. Web комплекс стандартов XML. Развиваются XML ориентированные СУБД.
- Распределенные СУБД с мобильной архитектурой. Развитие этих СУБД связано с развитием технологий телекоммуникаций.

Спасибо за внимание!