

Эффективность применения кремнийсодержащих агрохимикатов на зерновых и картофеле

Пэлий Александр Фёдорович, ведущий специалист центра компетенций АО «Апатит»

Александр Гумбольт (1769-1859) - Определение кремнезема (SiO_2) в растениях.

Сэр Хэмпфри Дэви (1778-1829) - «Кремний-содержащий эпидермис растений обеспечивает защиту растений от насекомых-вредителей». «The Elements of Structural Chemistry» (1813). Юстус фон Либих (1803-1873) - Доказал, что кремний нужен растениям для полного минерального питания как Р, К, N. «Organic Chemistry in Its Application to Agriculture and Physiology» (1840). Джон Якоб Берцелиус (1779 - 1848) - выделил Si как элемент и изучал кремний-органические взаимодействия в почве (1842).

Мировой оборот кремниевых удобрений 2 800 000 т/год

Дмитрий Менделеев (1834-1907) - Предложил использовать в качестве кремниевого удобрения аморфный диоксид кремния (1870). Владимир Вернадский (1863-1945) - «Не подлежит сомнению, что никакой живой организм не может существовать без кремния». «Кремний вырисовывается в мироздании как элемент, обладающий исключительным значением» (1921).

Кремнийсодержащие агрохимикаты и источники аморфного кремния

Применение Si: внесение в почву, листовые обработки и обработка семян.

Природные: диатомиты, цеолиты, зола (6 000 – 24 000 руб./т)

Синтетические: жидкое стекло, аэросил, силикагель, монокремниевая кислота (40 000 – 400 000 руб./т)

Отходы: гранулированный шлак, кремнегели, отходы металлургии (600 – 4 000 руб./т)

АпаСил
$$total denomination of the contract of the second part of the$$

Материал	Аэросил А-300 (аморфный SiO ₂)	Диатомит (Австралия)	Диатомит (Инзенское местор.)	Цеолит (Хотыненское местор.)	Si-Mg	Агрохимикат АпаСил АО «Апатит»
Активный кремний, мг/кг	6170	2550	2590	2730	5920 - 6340	4560 - 5330

Яровой рапс

Кремний – антистрессант для растений

- **У** УКРЕПЛЯЕТ ИММУНИТЕТ
- **♥** УСКОРЯЕТ РОСТ РАСТЕНИЯ
- **▼** ПОВЫШАЕТ СТРЕССО- УСТОЙЧИВОСТЬ

Кремний (Si) помогает растениям противостоять стрессам:

- засуха;
- засоление;
- болезни.

Si повышает фотосинтетическую активность листьев за счет улучшения метаболических процессов, протекающих в растениях, укрепляет стебли и повышает устойчивость к полеганию. Si усиливает поглощение элементов питания и повышает скорость роста растений.

 Засоление
 0,2% NaCl
 +Si

Фото: Институт фундаментальных проблем биологии РАН, 2021

Агрохимикат, состоящий в основном из аморфной (биологически активной) формы кремнезема и воды.

Является одним из продуктов получаемых при переработке апатитового концентрата в результате реакции нейтрализации кремнефтористоводородной кислоты.

18 января 2022 г. получено свидетельство о государственной регистрации пестицида и агрохимиката (АпаСил).

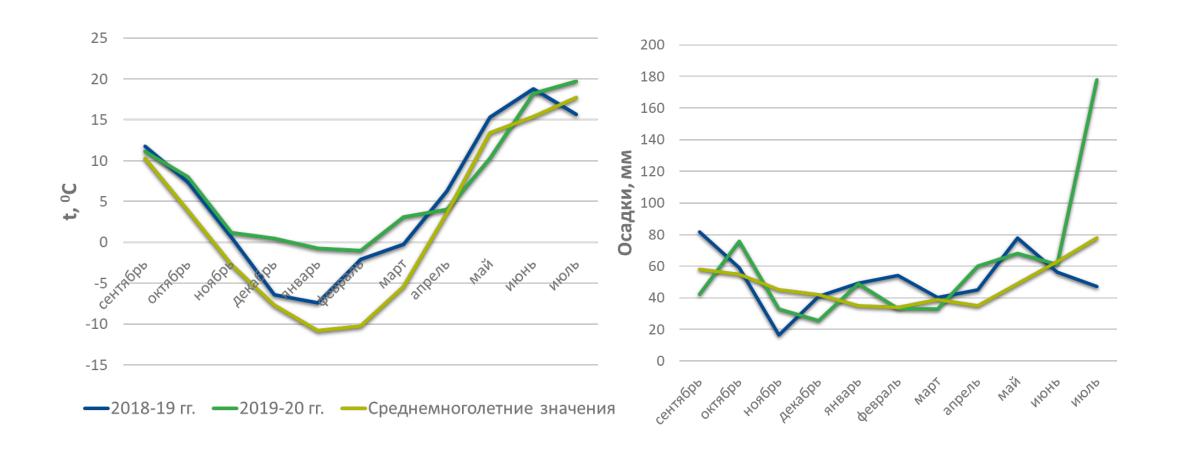
Испытания во Всероссийском НИИ фитопатологии

В июле 2019 г. был заложен первый вегетационный опыт на пшенице и картофеле для установления рекомендаций по применению агрохимиката АпаСил и его влияния на окружающую среду.

Получена существенная прибавка надземной биомассы пшеницы. С оптимальной дозой агрохимиката АпаСил колосья формировались раньше.

OO3DACTAROUMNE AO3MDOBKE

Используемые дозировки:


- протравливание 100, 200, 300, 400, 500 г/т;
- опрыскивание 100, 200, 300, 400, 500 г/га.

Возрастающие дозировки

Метеорологические условия на ЦОС ВНИИ агрохимии (мкр. Барыбино, МО) за 2018-2020 гг.

Плодородие почвы в опытах на озимой пшенице (Опытное поле ВНИИ агрохимии в мкр. Барыбино)

Год			Гидролитическ	Подвижные фор	мы, мг/кг почвы
	Гумус, %	pH _{KCl}	ая кислотность, ммоль (экв)/100 г почвы	P ₂ O ₅ *	K ₂ O*
2018	1,90	4,80	2,41	64	104
2019	1,28	5,34	-	82	116

Почва — дерново-подзолистая тяжелосуглинистая слабоокультуренная на покровной глине. Агрохимическая характеристика почвы перед закладкой опытов: очень низкое содержание гумуса, среднекислая (2018 г.) и слабокислая (2019 г.) реакция почвенной среды; среднее содержание подвижных форм фосфора и калия.

Применение агрохимиката АпаСил на озимой пшенице

48 и 27 г $SiO_2/100$ г препарата в 2019 и 2020 гг. соответственно

No	Panyaut aguta		2019	2020	
Nº	Вариант опыта	SiO₂, r/ra	Урожайность зерна, т/га	SiO₂, г/га	Урожайность зерна, т/га
1	Контроль (без удобрений)	-	3,50	-	2,69
2	N ₁₀₀₋₁₁₅ P ₃₀ K ₃₀ S ₂₀ — фон	-	4,60	-	5,81
3	Фон + АпаСил (50 г/т семян + 25 г/га в начало выхода в трубку + 25 г/га в начало колошения)	31	5,10	18	6,01
4	Фон + АпаСил (50 г/т семян + 50 г/га в начало выхода в трубку + 50 г/га в начало колошения)	55	5,20	31	6,32
5	Фон + АпаСил (50 г/т семян + 100 г/га в начало выхода в трубку + 100 г/га в начало колошения)	103	5,80	58	6,93
	HCP ₀₅	-	0,60	-	0,40

ВНИИА (ЦОС, Московская обл.)

Озимая пшеница Сорт - Московская 56

Полегание в варианте без внесения АпаСила

Экономическая эффективность применения агрохимиката АпаСил на озимой пшенице в 2019 и 2020 гг.

Nº	Вариант опыта	Урожайность зерна, т/га		Стоимость урожая, руб./га*		Прирост валовой выручки к Варианту 2, руб./га	
		2019	2020	2019	2020	2019	2020
1	Контроль (без удобрений)	3,51	2,69	38 610	32 280	-	-
2	N ₁₀₀₋₁₁₅ P ₃₀ K ₃₀ S ₂₀ – фон	4,64	5,81	51 040	69 720	-	-
3	Фон + АпаСил (50 г/т семян + 25 г/га в начало выхода в трубку + 25 г/га в начало колошения)	5,14	6,01	56 540	78 130	5 500	8 410
4	Фон + АпаСил (50 г/т семян + 50 г/га в начало выхода в трубку + 50 г/га в начало колошения)	5,23	6,32	57 530	75 840	6 490	6 120
5	Фон + АпаСил (50 г/т семян + 100 г/га в начало выхода в трубку + 100 г/га в начало колошения)	5,84	6,93	64 240	83 160	13 200	13 440

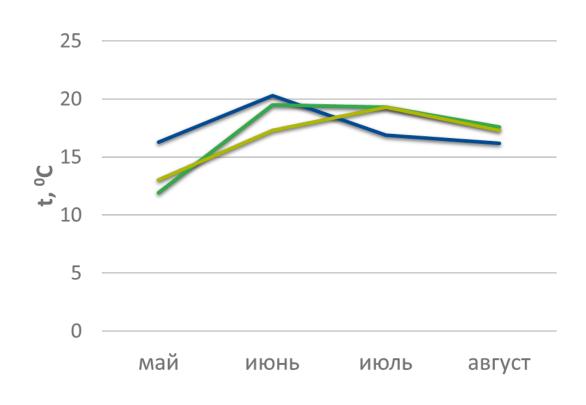
Примечание: стоимость зерна в 2019 г. – 11 000 руб./т;

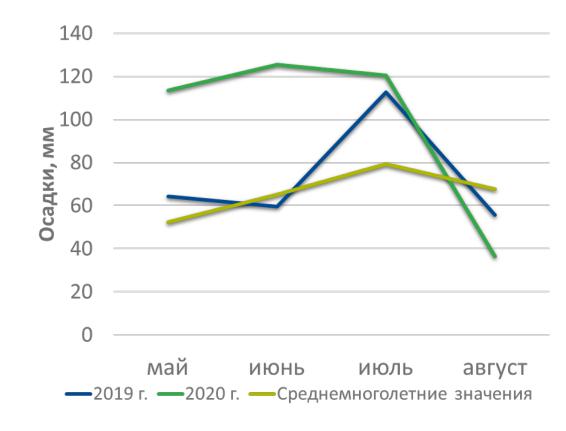
в 2020 г. – 12 000 руб./т (для зерна 3-го класса

в варианте 3 - 13 000 руб./т).

ВНИИА (ЦОС, Московская обл.)

Применение агрохимиката АпаСил на яровой пшенице и яровом ячмене в 2020 г.


31 г $SiO_2/100$ г препарата


		Яровая	пшеница	Яровой ячмень	
Nº	Вариант опыта	SiO ₂ , г/га	Урожайность зерна, т/га	SiO ₂ , r/ra	Урожайность зерна, т/га
1	N90P60K90—фон	-	6,59	-	6,19
2	Фон + АпаСил (50 г/т семян)	10	6,70	10	6,28
3	Фон + АпаСил (100 г/га в начало выхода в трубку)	31	6,83	31	6,44
4	Фон + АпаСил (50 г/т семян + 100 г/га в начало выхода в трубку)	41	7,22	41	7,59
	HCP ₀₅	-	0,38	-	0,65

ФИЦ «Немчиновка» (Экспериментальная база, г. Москва)

Метеорологические условия на экспериментальной базе ФИЦ картофеля им. Лорха (МО) за 2019-2020 гг.

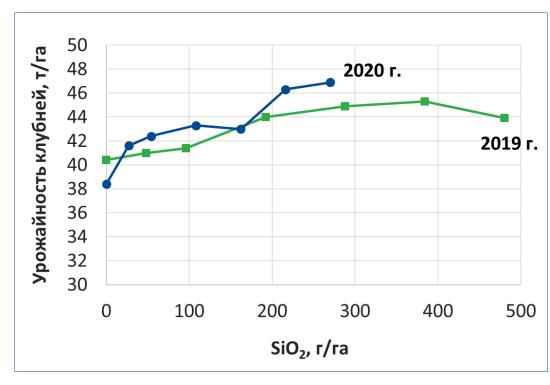
Плодородие почвы в опытах на картофеле

Год	_			Минерал Подвижные мг/кг поч		вижные фо мг/кг почвь	
	Гумус, %	V, %	pH _{KCI}	азот, мг/кг почвы	P ₂ O ₅ *	K ₂ O*	S
2019	1,9	50,7	5,0	35,3	269	128	3,4
2020	1,9	49,2	4,9	36,7	368	130	3,1

Почва — дерново-подзолистая супесчаная. Обладала относительно низкой гумусированностью (1,9%); среднекислой реакцией среды (pHKCl = 4,9-5,0); низкой суммой поглощенных оснований и степенью насыщенности ими (S = 3,1-3,4 мг-экв/100 г почвы; V = 49-51%); очень высоким содержанием подвижного фосфора (269-368 мг/кг почвы) и повышенным содержанием подвижного калия (128-130 мг/кг почвы).

Схема обработок картофеля (на семенные цели) агрохимикатом АпаСил

Nº	Panuaut on its	Доза SiO ₂ , г/га			
INS	Вариант опыта	2019	2020		
1	Контроль (без удобрений)	-	-		
2	N ₉₀ P ₉₀ K ₁₃₅ — фон	-	-		
3	Фон + АпаСил 100 г/га	48	27		
4	Фон + АпаСил 200 г/га	96	54		
5	Фон + АпаСил 400 г/га	192	108		
6	Фон + АпаСил 600 г/га	288	162		
7	Фон + АпаСил 800 г/га	384	216		
8	Фон + АпаСил 1000 г/га	480	270		



Опрыскивание растений проводилось в фазу бутонизации — начала цветения (расход рабочего раствора — 300 л/га)

ФИЦ картофеля (Экспериментальная база, Московская обл.)

Общая урожайность клубней картофеля в зависимости от доз SiO2 в 2019 и 2020 гг.

ФИЦ картофеля (Экспериментальная база, Московская обл.)

Сбор питательно ценных компонентов картофеля

Nº	Вариант опыта	Урожайность клубней > 30 мм, т/га		Сбор сухого вещества, т/га		Сбор крахмала, т/га		Сбор витамина С, кг/га	
		2019	2020	2019	2020	2019	2020	2019	2020
1	Без удобрений	26,8	28,9	7,1	8,3	5,6	6,7	5,3	6,5
2	N ₉₀ P ₉₀ K ₁₃₅ – фон	38,2	36,3	9,4	9,6	7,2	7,6	6,9	6,3
3	Фон + АпаСил 100 г/га	39,4	39,5	10,0	10,4	7,7	8,1	7,6	7,5
4	Фон + АпаСил 200 г/га	40,2	39,8	9,8	10,6	7,4	8,2	8,2	8,0
5	Фон + АпаСил 400 г/га	42,4	40,7	10,7	10,5	8,2	8,1	7,9	8,1
6	Фон + АпаСил 600 г/га	42,4	40,5	10,3	10,3	7,8	8,1	7,7	7,7
7	Фон + АпаСил 800 г/га	42,7	43,7	11,1	11,1	8,6	8,6	7,9	8,2
8	Фон + АпаСил 1000 г/га	41,1	43,9	10,6	11,1	8,3	8,7	7,7	8,3
	HCP ₀₅	1,3	-	0,5	-	0,2	-	0,5	-

ФИЦ картофеля (Экспериментальная база, Московская обл.)

Экономическая эффективность применения АпаСила на картофеле в 2019 и 2020 гг.

Nº	Вариант опыта	Урожайность клубней более 30 мм, т/га		Стоимость урожая, руб./га		Прирост валовой выручки к Варианту 2, руб./га	
		2019	2020	2019	2020	2019	2020
1	Контроль (без удобрений)	26,8	28,9	804 000	1 011 500	-	-
2	N ₉₀ P ₉₀ K ₁₃₅ – фон	38,2	36,3	1 146 000	1 270 500	-	-
3	Фон + 100 г/га АпаСил	39,4	39,5	1 182 000	1 382 500	36 000	112 000
4	Фон + 200 г/га АпаСил	40,2	39,8	1 206 000	1 393 000	60 000	122 500
5	Фон + 400 г/га АпаСил	42,4	40,7	1 272 000	1 424 500	126 000	154 000
6	Фон + 600 г/га АпаСил	42,4	40,5	1 272 000	1 417 500	126 000	147 000
7	Фон + 800 г/га АпаСил	42,7	43,7	1 281 000	1 529 500	135 000	259 000
8	Фон + 1000 г/га АпаСил	41,1	43,9	1 233 000	1 536 500	87 000	266 000

Примечание: стоимость семенного картофеля: 2019 г. – 30 тыс. руб./т; 2020 г. – 35 тыс. руб./т.

ФИЦ картофеля (Экспериментальная база, Московская обл.)

Эффективность применения агрохимиката АпаСил на культурах

Яровая и озимая пшеницы (22 и 26%)

Персик +32%

Картофель +22%

Томат +28%

Яровой рапс +136% (жесткая засуха)

Виноград +84%

Яровой ячмень +23%

Хризантема

Львиный зев

Свекла столовая +11%

Яблоня +16%

"Прикаспийский аграрный федеральный научный центр Российской академии наук"

Морковь +7%

Спасибо за внимание!